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Prediction is very difficult,
especially about the future.

Niels Bohr

“ ”
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Introduction

Coronary heart disease (CHD) is a major public health problem. A wide range of 
preventative interventions for individuals is available, involving either medication or 
lifestyle change. Both types of intervention are improved by accurate assessment of the 
individual’s risk: the benefits of medication are proportional to the recipient’s absolute 
risk of CHD, while lifestyle change is probably more likely in people who see themselves 
as at particularly high risk. Inaccurate risk assessment leads to failure to identify, treat 
and motivate high-risk people, to less cost-effective targeting of treatment to those at 
lower risk and to the potential for discouragement of all involved if the risk prediction 
model becomes devalued. Furthermore, if the model is biased, it may exacerbate health 
inequalities by, for example, systematically under-estimating the risk of CHD in socio-
economically deprived people and those from ethnic minorities.

Given the public health importance of CHD, the enormous volume of epidemiological 
research into its aetiology and the interest of primary care practitioners in its prevention, 
it is not surprising that a number of tools for assessing individual risk have been developed. 
However, three problems remain for those seeking an evidence-based approach to choosing 
and using these tools:

How should risk be assessed? There is no consensus as to the most suitable risk 1. 
prediction model, for use either internationally or in the United Kingdom. 

Which biomarkers should be incorporated into risk assessment? There is uncertainty 2. 
about the potential contribution of novel blood-borne molecular biomarkers to risk 
assessment, and about whether and how they should be used to identify those at 
higher risk. 

Can genetic information improve risk prediction? All available risk prediction models 3. 
leave an important proportion of individual variance in risk unexplained, and few 
integrate information on family history. Meanwhile, knowledge of the genetic 
contribution to risk is increasing. 

This report aims to answer these questions. It goes on to explore the implications of its 
findings for the appraisal and use of biomarkers more generally.
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1 Conventional risk factors

Summary

Predicting the future occurrence of CHD is not possible, but the risk can be estimated •	
with models based on cohort studies.

Most existing models are based on long-standing research on the residents of •	
Framingham, Massachusetts.

The findings from Framingham yield inaccurate results when applied to contemporary •	
British populations. In particular, they may exacerbate health inequalities.

This is because the incidence of and mortality from CHD have fallen recently, the •	
Framingham cohort differs from many groups to which findings from it have been 
applied, important risk factors such as ethnicity, socio-economic deprivation and family 
history are absent from the Framingham equations and susceptibility to risk factors 
varies between populations.

Attempts to recalibrate or adjust the Framingham equations to improve their •	
performance have not been shown to overcome these problems.

SCORE, QRISK and ASSIGN are risk prediction models that have been developed based •	
on different cohorts.

The group developing NICE’s guideline on lipid modification was uncertain about which •	
risk prediction model to recommend for use in the NHS. Eventually they selected a 
modified version of the Framingham equation.

However, QRISK appears to offer the best long-term promise.•	

Background

Clinicians and patients need reliable information about an individual’s risk of developing 
CHD. Ideally, they would have entirely accurate data and would be able to use a perfect 
model to estimate risk. Such a model would be able to categorise people dichotomously 
into those who would develop CHD and those who would not. Indeed, the perfect model 
would even be able to predict the timing of the disease’s onset. Those destined to develop 
CHD could receive intensive interventions to reduce their risk and postpone, if not prevent, 
the disease arising; those who would not develop CHD in the course of their lifetime could 
be reassured.

Of course, no such perfect model exists. Our knowledge of the disease’s aetiology is too 
incomplete, in terms of both which risk factors are independently important and how they 
should each be weighted. In any case, many of the risk factors which are known to be 
important, such as blood pressure and serum cholesterol level, cannot be measured with 
sufficient accuracy to support risk assessment with this putative degree of certainty. They 
show considerable intra-individual variation, making repeated measurement necessary 
for an accurate assessment. This is good clinical practice before treatment decisions are 
taken, but difficult and expensive in a research setting.

2



Instead of dichotomising people in this way, the available risk prediction models estimate 
the probability of CHD arising in a specified future period, usually ten years. 
There is an obvious limitation to the value of information from such models, in that it 
falls far short of providing clarity for individuals about what will happen to them. Most 
people who go on to develop CHD have estimated risks that indicate that a CHD event is 
unlikely. More than half of the cardiovascular disease events in the next ten years among 
asymptomatic adults in the UK will occur in people below the current drug treatment 
threshold of 20% over ten years.1

Nevertheless, the outputs of these models can be used to categorise people according to 
their risk of CHD, and this can in turn be used to decide how intensively to intervene in 
order to reduce risk. This usefully aligns the inconvenience, risks and costs of intervention 
with the potential benefits of risk reduction. But, by the same token, risk prediction 
models which misclassify people can be damaging, leading to a misperception of risk, 
a misapplication of clinical effort and resources, and costs and harms not offset by 
commensurate benefits. 

So the selection of which model to use is of critical importance. This chapter reviews how 
models are assessed, appraises those available and sets out to identify the most suitable 
for use in the United Kingdom.

The assessment of risk prediction models: calibration and discrimination

Risk prediction models have usually been assessed using two criteria, calibration and 
discrimination. The two are independent, meaning that whether a model has one 
characteristic is unrelated to whether it also has the other.2 

A well-calibrated model will correctly estimate the average risk of a group of people. 
Poor calibration will lead to systematic inaccuracy in a model’s performance; this might 
be universal, or might just occur in certain categories of subject. For example, people 
of south Asian ancestry living in western countries are at higher risk of CHD than white 
people. If a model omits ethnicity, it will systematically underestimate risk in south Asian 
people. The public health importance of this mis-calibration will depend on the proportion 
of south Asian people in the population in question; in an entirely white population it 
would not matter, but in modern British society it would be an important weakness. 

A model that discriminates well ranks individuals’ risk in the correct order, accurately 
labelling people as to how their degree of risk relates to that of the population as a whole. 
Such a model will have high sensitivity and specificity. Discrimination can be illustrated by 
receivor operator characteristic curves, which display models’ discriminatory capacity over 
the range of possible thresholds. A model which ignored ethnicity could still discriminate 
well in a population made up entirely of south Asian people or of white people, since in 
both cases ethnicity is not relevant to their risk relative to one another. In a population of 
mixed ethnicity, it would discriminate less well the larger the minority group was.
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So a model can discriminate well but be poorly calibrated if the population on which it 
is used is homogenous with respect to a variable which it incorrectly excludes. A well-
calibrated but poorly discriminating model might have several faults contributing to its 
inability to rank individuals correctly; if these faults cancelled each other out, the model’s 
prediction of average risk might (by chance) be correct, at least in some populations.

There are other dimensions to a model’s performance that are worth considering, such as 
the extent to which it reclassifies people into risk groups more accurately than alternatives 
and how much of the variation in risk it explains. These are considered further in Section 
4, but have seldom being used to assess existing CHD models.
 

Framingham model

The first research used to develop a risk prediction model was carried out in Framingham, 
a town in Massachusetts, USA. The Framingham Heart Study began in 1948, and is based 
on three generational cohorts of residents of the town, a total of 14,428 men and 
women. Members of the first cohort were all over the age of fifty years at inception. The 
Framingham Offspring Cohort, made up of children of the original cohort and their spouses, 
was recruited from 1971 and contained individuals recruited at a younger age than the 
original cohort, some as young as twelve years. In 2002, the Third Generation Study began, 
involving 4095 further people.

At the inception of the study, the Framingham researchers measured what have come to 
be known as conventional risk factors. These include blood pressure, smoking behaviour, 
blood lipids, and adiposity. The researchers then used multivariate analysis to develop 
an equation comprising those factors which influenced the risk of various cardiovascular 
outcomes, so that a prediction of risk could be made.3 Risk factors were measured at the 
cohorts’ inceptions and then the participants, who were initially all free from clinical 
CHD, were followed to see who developed a range of six outcomes, which included death 
from CHD and total CHD events, both fatal and non-fatal. Later, when up to twelve years’ 
follow-up of the combined cohorts was available, the researchers were able to derive 
refined equations which, being based on more data, were expected to be more reliable.4 
Later still, a simplified model based on categorical rather than continuous variables was 
published.5

Models tend to perform best in populations which resemble closely those in which they 
were developed. Before a model can be used confidently in a novel population, particularly 
one that has prima facie differences from the one in which it was developed, its predictive 
accuracy needs to be tested in that population. The equations which have resulted from 
the Framingham study have been tested against various non-US cohorts for this purpose.
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Brindle et al. compared the results of predictions from the 1991 version of the Framingham 
equation with the outcomes from the British regional heart study.6 They found that the 
overall risk of death predicted for the cohort over ten years by the Framingham equation 
(4.1%) was much higher than that actually experienced by the cohort (2.8%, 95% confidence 
interval 2.4% to 3.2%). CHD mortality was over-predicted by 47% and fatal and non-
fatal CHD events by 57% (p < 0.0001 in both cases). The degree of overestimation of risk 
was even across quintiles of risk, so the authors recalibrated the Framingham equation 
downwards to produce an adjusted equation which better fitted the outcomes in each 
quintile of risk. They did not report the receiver operator characteristic curves for either 
the original or recalibrated equation; such curves are an important measure of the 
discriminatory power of a risk model.7

The main reason for the inaccuracy of the Framingham equation is thought to be the large 
secular fall in population risk of CHD since the cohort was established.8 This has only been 
partly due to reductions in the prevalence of risk factors, especially smoking, which would 
be reflected in the outputs of the model. Better treatment of risk factors and of CHD itself 
have reduced the incidence and mortality of the disease, but equations based on earlier 
mortality experience will not take account of this. There are also specific influences of 
ethnicity on risk which are absent from the Framingham equations because the cohort was 
largely white. Furthermore, the complex effect of socio-economic deprivation on CHD risk 
is missing from the Framingham model because of the cohort’s relative economic security 
and prosperity.

There are also potentially important risk factors which are not included in the Framingham 
equations. These include family history, body mass index, the metabolic syndrome, socio-
economic status and lack of physical activity. The importance of these risk factors is better 
understood now, and some, such as obesity, have become more common. 

A systematic review compared the predicted risk according to the Framingham equations 
with that observed in other cohorts.9 The review included 27 studies with data from 
71,727 participants on predicted and observed risk of either CHD or cardiovascular disease 
more generally. Pooled risks were not calculated because of the heterogeneity of the 
results from individual studies, itself indicative of a problem with the generalisability of 
the Framingham model. For CHD, the ratios of predicted to observed risk over ten years 
ranged from an under-prediction ratio of 0.43 (95% confidence interval 0.27 to 0.67) in a 
high-risk population, to an over-prediction ratio of 2.87 (95% confidence interval 1.91 to 
4.31) in a lower-risk population. Under-prediction of risk was particularly likely in patients 
with diabetes and a family history of premature CHD, and in a higher-risk UK primary care 
population. Over-prediction of risk occurred in lower risk populations, mainly in Germany 
and France. This type of error is harder to correct by simple recalibration of the equation 
and suggests that the Framingham model is now unsuitable for use in populations which 
differ significantly from that in which it was developed. 
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A more recent systematic review of validation studies shed light on a possible reason for 
the variable performance of the Framingham equations.10 It found that the Framingham 
score performed well in North American and Australasian cohorts, but consistently 
worse in European cohorts, where it tended to overestimate risk. This may reflect lower 
underlying risks in European populations, along with the impact of ethnic, other genetic, 
and environmental differences which the Framingham model does not take into account. 
Susceptibility to risk factors – the extent to which a given risk factor affects outcome – may 
vary systematically by ethnicity and socio-economic status.

These possible reasons for the disappointing results of Framingham-based approaches in 
Europe were explored in a systematic review of cohort studies of CHD.11 It showed once 
again that the Framingham equation tends to overestimate risk in low-risk populations and 
underestimate it in high-risk populations. Furthermore, the systematic review reported 
that the estimated relative risks associated with major risk factors, such as age, systolic 
blood pressure, serum total cholesterol, smoking and diabetes, varied significantly 
between populations. For example, the association with smoking varied from 1.33 in a 
North American cohort to 2.44 in a Norwegian one. These variations severely compromise 
the suitability of risk models for international or global use.

The inaccuracies which result from use of the Framingham equation can lead to biases 
with pernicious effects on public health. In one study, the equation systematically 
underestimated risk when applied to a cohort of people from areas of high deprivation and 
from manual social classes, relative to more affluent individuals, so that fewer people in 
deprived areas reached thresholds for treatment.12 This kind of error could lead to clinical 
decisions which exacerbate socio-economic health inequalities.

Augmented Framingham models

One response to the deficiencies of the Framingham equations is to add new variables to 
them, in an effort to improve their performance. Studies taking this approach are mostly 
confined to evaluating whether the addition of a single biomarker, such as C-reactive 
protein, adequately corrects the Framingham equations. C-reactive protein has been 
studied with particular interest because a number of epidemiological studies have reported 
positive associations between elevated levels and CHD.13 Yet a systematic review found 
no definitive evidence that, for most individuals, C-reactive protein adds substantial 
predictive value beyond that provided by risk estimation using conventional risk factors for 
CHD.14 Use of C-reactive protein may however add to risk estimation in a small number of 
individuals at intermediate predicted risk according to the Framingham risk score. 

Another study examined whether including the presence of the metabolic syndrome 
improved CHD risk prediction beyond that achieved by the Framingham equations.15 
Analysis using receiver operator characteristic curves showed that it did not. No other 
additions to the Framingham equations have shown a substantial impact on their accuracy; 
given the reasons for their poor calibration, it is not surprising that this approach has not 
generally been effective.
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There are several risk prediction models based on Framingham equations, but with a 
different presentation to aid use. Examples include the New Zealand risk tables16, the joint 
European Societies’ charts17 and the second Joint British Societies’ recommendations18. In 
some cases, modest adjustments were made to improve accuracy, such as in the Sheffield 
tables.19 However, this approach is based on a belief in the appropriateness of using the 
Framingham equations, and is neither intended, nor likely, to overcome the more deep-
rooted flaws that limit the Framingham model’s value. Two validation studies used risk 
predicted by Framingham as a gold standard, which does not provide any information on 
the underlying validity of the Sheffield tables.20 21

In a more thorough-going approach to dealing with the inaccuracies of the Framingham 
model in British ethnic minority populations, the equation was recalibrated to reflect the 
higher incidence of cardiovascular disease in ethnic minorities, even when differences 
in conventional risk factors are accounted for.22 The results had face validity, with the 
recalibrated equation, termed ETHRISK, showing higher risks in people of South Asian origin 
than the original equation did. However, the study did not report whether the risks which 
ETHRISK predicted were those experienced by the populations in question, nor has the use 
of ETHRISK been validated in a prospective cohort study.

Alternatives to Framingham

SCORE

The SCORE project represented a break from the Framingham approach.23 The 
researchers set out to develop a risk scoring system for use in the clinical management of 
cardiovascular risk in Europe, based on a pool of datasets from twelve European cohort 
studies, most of which were in general population settings. The pooled dataset was large, 
including 205,178 persons and representing 2.7 million person years of observation. 
The researchers calculated separate estimation equations for CHD and for non-coronary 
cardiovascular disease, for high-risk and low-risk regions of Europe and for risk based 
on total cholesterol and on total cholesterol/HDL cholesterol ratio. The equations are 
based on only five variables: sex, age, smoking, systolic blood pressure and either total 
cholesterol or cholesterol/HDL ratio. They predict the risk of fatal events only. 

SCORE therefore has several advantages over Framingham, being based on a more recent, 
larger and more diverse cohort, potentially (though not necessarily) more similar to 
the contemporary British population ethnically and genetically. The authors gauged the 
predictive value of the risk charts by applying them to people in separate cohort studies; 
areas under the receiver operator characteristic curves ranged from 0.71 to 0.84, which 
suggests the equations discriminate well. 
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The SCORE risk equation was applied to a separate cohort of residents of Vorarlberg, in 
western Austria.24 The SCORE equation substantially over-estimated the risk of CHD death. 
The observed CHD death-rate over ten years was 0.7% (95% confidence interval 0.6% to 
0.8%) whereas SCORE predicted a death rate of 1.0%. The predicted rate of CHD deaths fell 
outside the observed rates’ 95% confidence intervals for both men and women. The same 
over-estimation occurred with death rates from any cardiovascular cause. The receiver 
operator characteristic curves for both sexes and both causes were more supportive of 
SCORE’s validity, with areas under the curve between 0.75 and 0.84. These results indicate 
that, in this population at least, SCORE discriminated well but was poorly calibrated. Good 
discrimination does not compensate for overestimation of risk, because decisions about the 
use of interventions need to be based on estimated absolute event rates, particularly for 
more costly interventions.

Another validation study compared predicted rates of fatal CHD and cardiovascular disease 
according to the appropriate SCORE equation with rates according to the Framingham 
equations corrected for German mortality experience, and with German national mortality 
statistics.25 SCORE predicted CHD death rates 1.3 times higher than Framingham, 
and cardiovascular disease rates 1.4 times higher. Recorded mortality outcomes lay 
between the two. The authors concluded that SCORE overestimated the risks of CHD and 
cardiovascular disease in Germany. 

It is surprising that a Framingham model underestimated risk in this study. A possible 
explanation is that the cohort to which the equations were applied excluded high-risk 
people, such as those who already had cardiovascular disease, those living in residential 
care and those with a particularly adverse risk factor profile, whereas the national 
mortality statistics were comprehensive. This suggests that the over-estimation of risk by 
SCORE is greater than this study indicates.

ASSIGN
ASSIGN is a risk score developed in Scotland. 26 It is of note because it was the first risk 
score to incorporate socio-economic deprivation and family history; earlier research had 
indicated the importance of these factors, but they had not been measured and used 
systematically to assess risk. However, ASSIGN has yet to be validated in an independent 
cohort.

QRISK

QRISK is a new British risk assessment tool.27 It is based on a database representative of 
British general practice containing the health records of 10 million people over 17 years. 
The cohort from which the model was derived contained 1.3 million adults aged 35 to 74 
years, and the validation cohort contained 610,000 people. It is the largest cardiovascular 
disease prediction study to date. Because it is from a routine clinical information system, 
rather than a specially assembled cohort of volunteers, it is likely to be less affected by 
selection and volunteer biases.
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The model in its first form (QRISK1) included age, sex, smoking status, systolic blood 
pressure, ratio of total serum cholesterol to high density lipoprotein cholesterol, body mass 
index, family history of coronary heart disease in a first degree relative aged less than 60 
years, an area measure of deprivation and existing treatment with an anti-hypertensive 
agent. The model’s predictions were compared with those of the Framingham equation and 
of ASSIGN and with the outcomes recorded for the cohort in Office for National Statistics 
mortality data. 

In the evaluation, the Framingham equation over-predicted mortality by 35% and ASSIGN 
over-predicted by 36%, whereas QRISK1 over-predicted by only 0.4%. The areas under the 
receiver operator characteristic curves for QRISK were 0.77 for men and 0.79 for women, 
slightly higher than those for the ASSIGN and Framingham equations. QRISK1 also had 
somewhat higher D statistics, a more useful measure which indicates it discriminated 
better between people with differing levels of risk, and R2 statistics, indicating that it 
explained more of the variation in risk. Perhaps because it included deprivation status, the 
QRISK equation was better calibrated to the UK than the other two models, showing less 
propensity to overestimate risk in affluent areas and underestimate it in deprived ones.

The authors subsequently refined QRISK1, publishing a revised risk prediction algorithm 
(QRISK2) which incorporated self-assigned ethnicity, type 2 diabetes, treated hypertension, 
rheumatoid arthritis, renal disease and atrial fibrillation.28 They compared the performance 
of this model with the original QRISK equation, and the modified version of the 
Framingham equation recommended by NICE (see below), in which, for south Asian men, 
the risk according to the Framingham equation is multiplied by 1.4. QRISK2 performed 
slightly better than QRISK1 and substantially better than the modified Framingham 
equation. 

A study applying the QRISK1 and Framingham equations to a separate primary care 
database of 1.07 million British patients confirmed QRISK1’s superior performance.29 An 
independent validation and verification analysis also found that QRISK1 performed better 
than the Framingham equation in a contemporary British population.30

NICE’s clinical guideline

In December 2003, the National Institute for Health and Clinical Excellence (NICE) was 
asked to prepare a clinical guideline on lipid modification, covering the estimation of 
cardiovascular risk and the use of interventions to modify blood lipids in the primary 
and secondary prevention of cardiovascular disease. A draft guideline was published for 
consultation in June 2007, recommending risk estimation using the Framingham equations. 
The final version of the guideline was expected to be published in January 2008.

During the consultation period, the first QRISK1 paper was published.27 In October 2007, 
NICE announced a delay to the process and asked the group developing the guideline to 
assess QRISK1 and reconsider their recommendations on risk estimation, seeking advice on 
technical issues from independent experts. 
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The guideline development group received recommendations of QRISK1 from Professors 
Doug Altman, Rod Jackson and Sir Richard Peto. In January 2008, the group unanimously 
agreed that QRISK1 should be recommended instead of the Framingham equations, and 
accordingly issued for consultation a revised draft of the section of the guideline dealing 
with risk assessment.

However, the final version of the guideline recommended use of the Framingham equation, 
with the estimated risk adjusted in South Asian men and in people with a family history. 
The choice about which risk assessment method to recommend was “one of the most 
difficult decisions that the guideline development group faced”.31 The main reasons for the 
decision to prefer a Framingham-based approach were:

Ascertainment and accuracy of outcome data: because the QRISK outcomes data •	
were ascertained via routine datasets rather than via formal research, they may be 
less accurate.

Independent validation of QRISK: the details of the QRISK1 equation had not yet •	
been made available, so independent validation and comparison with other scores 
was not possible. 

Use in practice: the novelty of QRISK raised questions about how readily it could be •	
used in clinical general practice.

Comparisons with ASSIGN: the differences between Framingham, ASSIGN and QRISK1 •	
were small in terms of discrimination. The guideline development group did not 
believe that they had enough evidence to decide that QRISK1 was definitively the 
better score for the UK, and superior to ASSIGN.

Overestimation versus underestimation: The group believed that Framingham’s •	
overestimation errors were more acceptable than QRISK’s underestimation, 
although the former are much larger than the latter.

The guideline development group could not make a decision that one risk assessment 
equation was clearly superior in the UK population. They recognised a strong case for the 
use of a risk equation which has been developed and validated on a UK population and 
which takes account of deprivation, but recommending a new score required a higher level 
of certainty than they had with regard to QRISK1. After a vote, the group decided to return 
to their original recommendation of Framingham, despite its known limitations, because it 
was currently in use and its limitations were understood. 
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Appraisal

The four leading candidate risk scores are Framingham, SCORE, ASSIGN and QRISK2. Table 1 
compares them.

Table 1: Comparison of CHD risk estimation models

Framingham SCORE ASSIGN QRISK2

Calibration 
(predicted risk 
equals observed 
risk)

Overestimates risk  
when it is low and 
underestimates it 
when it is high 

Overestimates 
risk

Not yet 
adequately 
tested

Apparently 
good

Discrimination 
(individuals ranked 
correctly)

Adequate Adequate Not yet 
adequately 
tested

Apparently 
good

Geographical origin United States Europe Scotland United 
Kingdom

Recency Outcomes predate fall 
in CHD mortality

More 
recent than 
Framingham

Recent Recent

Validation in the 
UK

Shows poor 
calibration, though 
partial adjustment 
possible

None apparent Scotland 
only

Yes

Ethnicity Not included Not included Not 
included

Included

Socio-economic 
deprivation

Not included Not included Included Included

Standardisation 
of outcome 
measurement

Yes Yes Yes No

Capacity for 
continuous 
updating

No No No Yes
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The last two rows of Table 1 show specific differences between QRISK2 and the other three 
risk measurement tools. 

Standardisation of outcome measurement•	  draws attention to the fact that QRISK is 
based on outcome data gathered from routine clinical datasets, while the other risk 
estimation models are constructed from formal cohort studies with scientifically 
adjudicated outcome measures. The former are likely to be less accurate. If, for 
example, incident cases of CHD were under-recorded in the clinical dataset, then 
the true risk in individuals would be higher than that predicted by the model. 

Validation of deaths against Office for National Statistics (ONS) data showed that 
93% of deaths from cardiovascular disease recorded by the ONS were also in the 
general practice dataset.28  The under-ascertainment of non-fatal incident events 
was not assessed.

This issue could reduce both the calibration and discrimination of QRISK when 
used in practice, but its importance cannot be easily gauged at present. This 
limits the confidence we can have in QRISK, and can only be resolved by more 
research showing the predictive accuracy of QRISK in populations with more reliably 
ascertained outcomes.

While the origins of QRISK in an open clinical cohort, rather than a closed research •	
one, raise questions with regard to ascertainment of outcomes, they are an 
advantage in terms of capacity for continuous updating. This means that as more 
data accrues from the practices supplying data for QRISK, the accuracy of the 
model improves; if the overall risk of CHD changes over time, or the importance of 
a risk factor alters, that too can be readily detected and incorporated into the risk 
model. 

This is an important advantage. Many of the problems with Framingham-based 
approaches stem from the difficulty of adapting them to change, be it geographical, 
ethnic or secular. If QRISK proves capable of continuous semi-automatic 
modification, it will have an attractive durability.

QRISK emerges from Table 1 with the greatest potential. It is most likely to be sensitive 
to the equity issues of great current concern, it reflects best the contemporary British 
population and its initial results are encouraging. The uncertain approach of NICE’s 
guideline development group illustrates how difficult it can be to judge how much 
evidence is needed before a change in practice can be recommended, but if QRISK lives up 
to its promise, it will in time become established as the risk assessment method of choice.
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2 The role of novel molecular biomarkers in estimating  
 risk

Summary

About three quarters of coronary heart disease (CHD) risk is explained by conventional •	
risk factors. 

Novel biomarkers present in blood are also associated with increases in risk.•	

To contribute substantially to an improvement in the performance of existing models, •	
novel biomarkers would need to have a close association with CHD, to exhibit statistical 
independence from conventional risk factors and to be prevalent, sensitive and specific 
in diagnostic performance, and easy and inexpensive to measure reliably.

None of the novel biomarkers satisfy these criteria at present. •	

Several are independently associated with CHD. However, more stringent analysis of •	
their discriminatory performance is either absent (and unlikely to be positive) or shows 
that they bring little advantage.

The novel biomarkers may provide insights into the pathogenesis of CHD and into •	
how to monitor and treat patients. They may also have a role in risk assessment in 
specific clinical situations. However, they seem unlikely to have major public health 
importance.

Background

Section 1 described how knowledge of conventional risk factors can be used to estimate 
the risk of CHD in individuals. Although the calibration of models based on those risk 
factors is good, they do not discriminate perfectly, and leave about a quarter of the risk 
of CHD unexplained, prompting researchers to look for other risk factors which may be 
important.32

A range of novel molecular biomarkers have been identified which may be independently 
associated with CHD risk. Hitherto, researchers’ interest in these novel biomarkers has 
been largely driven by the insights into the mechanism of vascular disease that they might 
provide, rather than the development of improved prediction models for clinical use. 

Those most frequently investigated are listed in Table 2.
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Table 2: Novel molecular biomarkers of coronary heart disease

Biomarker Description

C-reactive protein A plasma protein synthesised mainly by the liver in response 
to inflammation. Its function is unknown.

Fibrinogen The principal protein in blood coagulation, during which it is 
converted into fibrin by thrombin. Fibrinogen is an important 
determinant of blood viscosity and platelet aggregation.

Homocysteine An amino acid. People with homocystinuria, a rare inborn 
error of metabolism, have high levels of circulating 
homocysteine and premature vascular disease. Homocysteine 
may be raised for other reasons, such as diet and medication. 

High circulating levels of homocysteine can affect blood 
coagulation and endothelial resistance to thrombosis, and 
interfere with the vasodilator and antithrombotic functions of 
nitric oxide.

N-terminal fragment 
brain natriuretic 
peptide (NT-pro-BNP)

Brain natriuretic peptide (BNP) is a polypeptide secreted by 
the ventricles of the heart in response to excessive stretching 
of heart muscle cells. It is co-secreted with an N-terminal 
fragment (NT-pro-BNP) which is biologically inactive but has a 
longer half-life, making it more suitable for diagnostic blood 
testing. 

BNP is a marker of congestive cardiac failure. It reduces 
systemic vascular resistance and central venous pressure and 
causes natriuresis.

Small dense 
lipoproteins

The lipoproteins which carry cholesterol in the blood are 
categorised according to their density, with the most 
commonly measured being low density lipoprotein (LDL) 
cholesterol and high density lipoprotein (HDL) cholesterol. 
Low density lipoprotein molecules are not homogenous; those 
which are smaller and denser may have independent effects 
on risk of atherosclerosis. 

Apolipoproteins Apolipoproteins are proteins that bind to lipids to form the 
water-soluble lipoproteins by which cholesterol is transported 
in blood. They are also enzyme co-factors, receptor ligands 
and lipid transfer carriers that regulate the metabolism of 
lipoproteins and their uptake in tissues. There are many 
genetic polymorphisms which affect apolipoproteins’ structure 
and function.

There are six classes of apolipoprotein, A, B, C, D, E and H.  
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Lipoprotein-associated 
phospholipase A2 

Lipoprotein-associated phospholipase A2 (Lp-PLA2) is an 
enzyme of 441 amino acids. It is produced by inflammatory 
cells and hydrolyzes oxidized phospholipids in low-density 
lipoprotein. The products of this reaction are believed to 
cause inflammation in the arterial lining. 

Lipoprotein(a) Lipoprotein(a) is a low-density lipoprotein-like particle 
synthesised by the liver. It consists of an apolipoprotein 
molecule covalently linked to a very large glycoprotein known 
as apolipoprotein(a). Its physiological and pathological role 
are uncertain, but in-vitro and animal studies suggest that 
lipoprotein(a) can promote thrombosis and inflammation.

There are several important questions about these novel biomarkers:

Are they independently associated with CHD?•	

If so, how strong is the association?•	

Do they lie on the pathogenetic pathway for the development of atherosclerosis, •	
plaque rupture or plaque-associated thrombosis?

Would we be better able to estimate the risk of CHD in individuals if we took any of •	
these biomarkers into account?

This chapter reviews the relationship between measures of association and predictive 
value, briefly summarises the strength of evidence linking these biomarkers to CHD and 
considers whether they are yet suitable for inclusion in risk prediction models.

Measures of association and of predictive value 

Most studies of novel biomarkers measure the strength of the association between the 
biomarker and an outcome of interest, such as diagnosis of or death from CHD. These 
associations are expressed as odds ratios, relative risks or hazard ratios, usually after 
adjustment to eliminate as far as possible the confounding which can arise from the 
separate association of the biomarker and conventional risk factors, especially smoking, 
raised total or low-density lipoprotein cholesterol and diabetes. 

This approach is suitable for exploring the connection between the biomarker and CHD, 
and especially for identifying biomarkers which may be indicators of, or even participants 
in, the process by which CHD occurs. It may also provide insights into how to monitor and 
treat patients. However, for a biomarker to be generally useful in classifying individuals 
as to their level of risk, it must have more than a statistically significant association with 
disease occurrence. The prevalence of the risk factor, its positive and negative predictive 
values, the magnitude of the risk estimate, selection of thresholds and the co-variation 
among risk factors and among their combinations are all of importance. 
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Theoretical analysis, supported by empirical work, has shown that, once a model has 
fairly good discrimination, adding further risk factors which have significant associations 
with the disease usually does not make much difference to the area under the receiver 
operator characteristic curve. Even epidemiologically impressive relative risks of two or 
three will not increase the area under the receiver operator characteristic curve to a 
clinically important extent; the association must be unusually strong for the addition of 
the risk factor to materially affect the curve.33 The lack of change in the receiver operator 
characteristic curve may be a sign of the irrelevance of the added risk factor or of the 
inappropriate insensitivity of the assessment method, but it has prompted a search for 
better ways of measuring discrimination, such as reclassification. These are discussed 
later; a recent article by Pencina et al. describes two newer and potentially important 
measures of discrimination.34  

C-reactive protein

A systematic review reported an overall odds ratio of 1.58 (95% confidence interval 1.48 to 
1.68) derived from comparison of participants in the top third of the group with respect to 
base-line C-reactive protein values with those in the bottom third.35  The review included 
7068 participants in twenty-two nested case-control studies, twenty of which adjusted 
their results for smoking and other established risk factors. To limit publication bias, the 
authors also reported an analysis restricted to the four studies involving more than five 
hundred people; this yielded an odds ratio of 1.49 (95% confidence interval, 1.37 to 1.62). 
The authors also reported results from the Reykjavik Study, a nested case-control study of 
CHD based in the Icelandic capital. Addition of C-reactive protein levels only improved the 
area under the receiver operator characteristic curve to 0.65 from 0.64, its level based on 
knowledge of total cholesterol, smoking status and systolic blood pressure.

A study based on 4446 people from the Framingham cohorts supported these results.36 
The discriminatory capacity of the risk model for cardiovascular disease and CHD was 
unchanged by the addition of C-reactive protein to the multivariable model. The authors 
concluded “Elevated [C-reactive protein] level provided no further prognostic information 
beyond traditional office risk factor assessment to predict future major CVD and major 
coronary heart disease in this population sample.”

Furthermore, a systematic review included 31 studies of 28 prospective cohorts, involving 
a total of 84,063 individuals and 11,252 incident CHD events.37 Improvements in calibration 
from the addition of C-reactive protein to the Framingham risk score were either absent or 
very small. Evidence from 13 studies (7201 cases) indicated that C-reactive protein did not 
consistently improve the discrimination of the Framingham risk score, with area under the 
receiver operator characteristic curve increments in the range 0 to 0.15. There was wide 
overlap of C-reactive protein values among people who later suffered events and those 
who did not.
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Finally, a study using Mendelian randomisation cast further doubt on the causal role of 
C-reactive protein.38 It reported that the risk of CHD was unrelated to the presence or 
absence of single nucleotide polymorphisms which cause increased levels of circulating 
C-reactive protein. This suggests strongly that the association between C-reactive protein 
and CHD not causal, but is instead the result of confounding by other factors, such as 
inflammation, causing both CHD and, separately, an increase in the biomarker. However, 
this does not in itself mean that the biomarker could not be of value in risk prediction. 

Fibrinogen

A systematic review examining the association of fibrinogen with CHD included records of 
154,211 participants in 31 prospective studies.39 After adjustment for conventional risk 
factors, the hazard ratio per 1 g/l increase in fibrinogen was 1.82 (95% confidence interval 
1.60 to 2.06). This result may be substantially inflated by residual confounding. In any 
case, the study did not report areas under the receiver operator characteristic curve, but 
it is unlikely that a hazard ratio of this level would add usefully to a model’s discriminatory 
ability.

Homocysteine

Several systematic reviews have meta-analysed prospective studies of the relationship 
between homocysteine and CHD. One included 72 case-control studies of the prevalence 
of a mutation in the methylenetetrahydrofolate reductase gene, which causes elevated 
blood levels of homocysteine, and twenty prospective studies of serum homocysteine and 
disease risk. The odds ratios for CHD for a 5 micromol/l increase in serum homocysteine 
concentration were 1.42 (95% confidence interval 1.11 to 1.84) in the genetic studies and 
1.32 (95% confidence interval 1.19 to 1.45) in the prospective studies.40

A second meta-analysis used data from thirty prospective or retrospective studies involving 
a total of 5073 CHD events.41 After adjustment for known cardiovascular risk factors and 
regression-dilution bias in the prospective studies, a 25% higher usual homocysteine level 
was associated with an odds ratio of 1.12 (95% confidence interval 1.04 to 1.20).

As with fibrinogen, the substantial correlations between homocysteine levels and 
conventional risk factors, along with error in the measurement of the latter, mean that 
substantial residual confounding is probably present in all these analyses. 

N-terminal fragment brain natriuretic peptide 

There are only two published population-based cohort studies of the relationship between 
N-terminal fragment brain natriuretic peptide and CHD, including 225 cardiovascular 
events.42 43 Both these studies reported an association between the biomarker and CHD, but 
considerable further work is required before a secure evidence-base will exist.
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Small dense lipoproteins

There are no published population-based cohort studies of the relationship between 
concentrations of small, dense lipoproteins and CHD. However, a number of non-systematic 
reviews have cast doubt on the existence of an independent relationship between the 
two. For example, Sacks and Campos concluded “In summary, the picture that is emerging 
from epidemiology is that small LDL [low density lipoprotein] does not have a special 
relationship to CHD beyond its contribution to LDL concentration. ... We think that it is 
likely that confounding by triglycerides and other lipid risk factors is severe since most 
studies reported that the risk initially associated with small LDL becomes null or inverse 
after adjustment.”44 Another review article concluded “To date, the magnitude and 
independence of the association of LDL size with cardiovascular diseases has been tested 
in more than 50 studies, including cross-sectional and prospective epidemiologic as well 
as clinical intervention trials. The vast majority, but not all, of these trials demonstrate 
a significant univariate association of small, dense LDL with increased coronary heart 
disease (CHD) risk. However, LDL size is rarely a significant and independent predictor of 
CHD risk after multivariate adjustments for confounding variables, in particular plasma 
triglyceride levels and HDL cholesterol concentrations.”45 The same authors observed 
elsewhere “it may be that the increased risk associated with smaller LDL size in univariate 
analyses is a consequence of the broader pathophysiology of which small, dense LDL is a 
part (e.g. high triglycerides, low HDL cholesterol, increased LDL particle number, obesity, 
insulin resistance, diabetes, metabolic syndrome), rather than a reflection of an intrinsic 
increased atherogenic potential. A clear causal relationship between small dense LDL and 
increased cardiovascular risk cannot be proven, based on our present knowledge.”46

Apolipoprotein A1 

Apolipoprotein A1 is the major lipoprotein of high-density lipoprotein cholesterol. 
Variants of the gene that codes for apolipoprotein A1 lead to lower levels of high-density 
lipoprotein cholesterol. A meta-analysis of 21 studies involving 6333 CHD cases reported 
a relative risk for CHD of 1.62 (95% confidence interval 1.43 to 1.83) in a comparison of 
those in the bottom third of baseline values of apolipoprotein A1 with those in the top 
third; following correction for within-person variation in apolipoprotein A1 levels, the 
relative risk was 2.03 (95% confidence interval 1.69 to 2.42).47 There was evidence of 
considerable heterogeneity among these studies, limiting the reliance which can be placed 
on the result. Furthermore, many studies did not adjust fully for confounders, including 
lipid levels, some of which are highly correlated with apolipoprotein levels. It is therefore 
likely that much of the apparent inverse association between apolipoprotein A1 and CHD 
is in fact attributable to CHD’s well-studied association with high-density lipoprotein 
cholesterol.
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Apolipoprotein B

Apolipoprotein B fulfils the same role with respect to low-density lipoprotein cholesterol 
that apolipoprotein A1 does with respect to high-density lipoprotein cholesterol. 
Correspondingly, higher levels of this apolipoprotein are associated with higher rates of 
CHD. A meta-analysis of 19 studies involving 6320 CHD cases reported a relative risk for 
CHD of 1.99 (95% confidence interval 1.65 to 2.39) comparing those in the top third of 
baseline values of apolipoprotein B with those in the bottom third.47 Following correction 
for regression dilution bias, the relative risk was 2.50 (95% confidence interval 1.96 to 
3.19). Again, there was evidence of considerable heterogeneity amongst the published 
studies. The same issue of lack of adjustment for confounders limits the reliability of these 
studies, as it did those of apolipoprotein A1. 

Apolipoprotein E

The structure of circulating apolipoprotein E is determined by a genotype made up from 
two genes drawn from three common alleles, ε2, ε3 (the commonest) and ε4. Differences 
in the structure of apolipoprotein isoforms influence metabolic handling of cholesterol; 
people carrying ε3 have a lower total cholesterol than those with the ε4 allele, but higher 
than those with the ε2 allele. In the case of this biomarker, researchers have therefore 
concentrated on investigating the relationship between CHD and genotype, rather than 
phenotype. There are no published systematic reviews of the relationship between CHD 
and apolipoprotein E phenotype, but one meta-analysis of the relationship with genotype 
reported that, compared with people with ε3, ε2 carriers had an odds ratio of CHD of 
0.80 (95% CI, 0.70 to 0.90) and ε4 carriers had an odds ratio of 1.06 (95% CI, 0.99 to 
1.13).48 Odds ratios increased progressively from those with the ε2/ε2 genotype (0.83, 
95% confidence interval 0.55 to 1.25), through ε2/ε3 (0.82, 95% confidence interval 0.72 
to 0.92), ε2/ε4 (0.93, 95% confidence interval 0.81 to 1.07), ε3/ε4 (1.05, 95% confidence 
interval 0.99 to 1.12) and ε4/ε4 (1.22, 95% confidence interval 1.08 to 1.38). As with the 
other apolipoproteins, there was heterogeneity between studies. 

Lipoprotein-associated phospholipase A2 

Lipoprotein-associated phospholipase A2 (Lp-PLA2) is an enzyme that hydrolyses 
phospholipids, specifically LDL, in the artery wall. This reaction produces pro-inflammatory, 
atherogenic by-products which attract monocytes, impair endothelial function, cause 
cell death by disrupting plasma membranes and induce apoptosis in smooth muscle cells 
and macrophages. Other inflammatory markers are raised in the presence of non-vascular 
inflammation, reducing the specificity of testing for them. The status of Lp-PLA2 as a more 
specific marker of vascular inflammation and atheroma has stimulated particular interest. 
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A systematic review of the relationship between Lp-PLA2 and CHD reported an odds ratio 
adjusted for conventional CVD risk factors of 1.60 (95% confidence
interval 1.36 to 1.89).49 The risk estimate compared the highest quantile (in different 
studies tertiles, quartiles or quintiles) versus the bottom quantile or the difference in 
risk associated with a one standard deviation change in Lp-PLA2 levels. There will be an 
important interaction between how many quantiles a study used to calculate the measure 
of association and the size of the measure of association, but the authors did not adjust for 
this. 

Lipoprotein(a)

There appear to be no published systematic reviews of the relationship between 
lipoprotein(a) and CHD. An analysis of the Reykjavik Study reported an odds ratio of 1.60 
for this association (95% confidence interval 1.38 to 1.85), in a comparison of extreme 
thirds of baseline Lp(a) levels.50 Again, this is not a strong enough association to make it 
likely that the addition of lipoprotein(a) will improve models’ discriminatory power, though 
that has yet to be investigated. 

Discussion

There are clear and consistent independent associations reported between several novel 
biomarkers and risk of CHD. However, the association is probably less than that reported, 
because of residual confounding for which adjustment cannot be made. 

It has been claimed that enough is known about C-reactive protein in particular to 
secure its place in clinical risk prediction.51 However, these arguments are based on the 
demonstration of higher risks of CHD in people with higher levels of the biomarker, not on 
analysis of improved risk estimation if the biomarker is incorporated. Analyses adopting 
the latter approach undermine the argument; for example, in the Atherosclerosis Risk in 
Communities study, conventional risk markers predicted CHD with good discrimination, 
with an area under the characteristic curve of about 0.8.52 Nineteen novel biomarkers were 
investigated; none individually made a useful contribution to risk prediction. The addition 
of C-reactive protein only improved the area under the receiver operator characteristic 
curve by 0.003, Lp-PLA2 by 0.006 and homocysteine by 0.001. 

Similar findings were reported from the Framingham cohort itself.53 The authors measured 
the contribution to CHD risk of ten biomarkers, including C-reactive protein, NT-pro-BNP, 
fibrinogen and homocysteine. The results were disappointing: areas uner the receiver 
operator characteristic curve for major cardiovascular events were 0.68 with age and sex 
as predictors, 0.70 with age, sex, and a score based on the novel biomarkers as predictors, 
0.76 with age, sex and conventional risk factors as predictors and 0.77 with all predictors. 
The receiver operator characteristic curves with and without the novel biomarkers crossed 
several times, with no clear advantage from the latter’s inclusion.
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These results were reinforced by a study from Sweden.54 C-reactive protein and N-terminal 
fragment brain natriuretic peptide made only trivial differences to a risk prediction model 
based on conventional risk factors, increasing the area under the receiver operator curve 
by 0.007 (p = 0.04) and 0.009 (p = 0.08), respectively. The proportion of participants 
reclassified was small (8% for cardiovascular risk, 5% for coronary risk), and the net 
reclassification improvement was not significant for either cardiovascular events or 
coronary events.

Another issue of importance is the feasibility of routine laboratory analysis. Before these 
biomarkers could be used in primary care settings, we would need reliable and affordable 
means of measuring them in district hospital chemical pathology laboratories. 

Conclusion

While the associations of novel biomarkers with CHD shed useful light on the pathogenesis 
of the disease and may be valuable in developing ways of monitoring and treating patients, 
statistical considerations coupled with available empirical studies make it unlikely 
that the associations are strong enough to have an important general influence on the 
discriminatory ability of risk models. 

Whether there are specific circumstances in which they may be of more benefit is 
considered in the final chapter.
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3 Genetics and coronary heart disease

Summary

Genetic factors influence CHD risk, partly through their effects on conventional risk •	
factors.

There are important theoretical advantages to risk prediction based on genomic •	
information.

However, the influence of genes on CHD is harder to unravel than in other cardiac and •	
some non-cardiac disorders.

Existing research has revealed a modest number of loci definitely associated with CHD.•	

Single alleles with an individual influence on risk large enough to improve the •	
performance of risk models probably do not exist.

In breast cancer, there is potential value in a polygenic approach to risk estimation, in •	
which the multiplicative effect of several genes is modelled. 

This approach has been attempted in CHD. However, specific features of the •	
epidemiology of CHD make it less fruitful. Merging genetic and phenotypic inputs in a 
risk prediction model is far from straightforward, and the proportion of people in whom 
genetic risk makes an important difference may be small.

Simulations show that gene frequencies must be fairly high for risk estimation using •	
genes alone to be viable.

Hypothetical and empirical studies confirm the potential of this approach, but also •	
its dependence on genes which confer substantial increases in risk and are fairly 
prevalent.

One empirical study indicates that combining conventional and genomic risk factors •	
may produce a larger area under the receiver operator characteristic curve than either 
alone. 

It is likely to be some time before genetic information is of value in improving the •	
estimation of individuals’ risk of CHD.

Background

Section 2 showed that, although about a quarter of the risk of coronary heart disease 
(CHD) is unexplained by conventional risk factors, novel biomarker molecules present in 
blood are unlikely to improve our ability to detect prospectively those likely to suffer from 
CHD. Are the prospects for genetic information any better? This chapter explores what 
is known about the contribution of genetic knowledge to estimating CHD risk, looking at 
single gene and polygenic studies.
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Advantages of genomic prediction

In principle, using genetic biomarkers to estimate risk is more straightforward than using 
non-genetic ones, because the former can be measured almost without error and do not 
vary in an individual over time. Also, they need only be ascertained once, and this can be 
early in life, whereas other risk factors may not manifest until later in life. This allows 
lifestyle and other interventions to begin earlier, potentially increasing their effects. 
A further advantage of genotype information is that multiple genetic markers can be 
measured simultaneously, in the same assay; this is not true for the other biomarkers.

Although there would be substantial difficulties in integrating genetic and non-genetic 
biomarkers to produce a single risk model, these could be circumvented if genetic 
risk modelling alone was capable of generating risk estimation of equivalent accuracy. 
Measurement of non-genetic risk factors would still be necessary for clinical management, 
but this approach would capitalise on the theoretical advantages of genetic risk factors. 

Another potential role for genetic information is in identifying individuals who may gain 
particularly from risk factor changes, either specific or general. For example, control of 
hypertension might be of high value in someone whose genes made his or her arteries 
especially prone to atheroma in the presence of hypertension. 

The role of genes in CHD

Heritable effects on CHD operate in two ways. Some conventional risk factors are in part 
genetically determined traits; for example, both plasma cholesterol concentration and 
hypertension are heritable.55 56 However these effects are not fully explanatory. Family 
history is an important independent risk factor for CHD; in Framingham, a family history of 
premature atherosclerotic vascular disease increased CHD risk, even after adjustment for 
conventional risk factors, by a factor of 2.0 in men and 1.7 in women.57 So, it is likely that 
some of the unexplained risk is attributable to genes operating other than via effects of 
conventional risk factors. 

Recent years have seen great advances in understanding the genetic basis of less 
common cardiac disorders. Causative mutations have been found in about two-thirds of 
cases of hypertrophic cardiomyopathy, nearly as high a proportion of cases of dilated 
cardiomyopathy and most cases of familial cardiac arrhythmias.58 CHD is proving a much 
less tractable problem. It is a multi-factorial disease, not attributable to any single genetic 
or environmental cause. Risk alleles are incompletely penetrant and do not co-segregate 
with the disease phenotype. 
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Existing knowledge

Existing research into the genetic basis of CHD falls into two categories. Firstly, earlier 
studies investigated candidate genes on which suspicion fell as a result of evidence that 
the gene influenced one of the mechanisms by which CHD arose, such as lipoprotein 
metabolism or inflammation. More recently, genome-wide association studies have 
investigated many variants across the genome, without any underlying hypotheses. These 
empirical studies are not dependent on prior knowledge of gene function. The studies in 
both categories are often relatively small and many may be biased, for example due to the 
population studied or to publication bias.

The overwhelming majority of this research has failed to identify convincing associations 
between genetic factors and CHD. However, as studies become more numerous and larger, 
statistically significant positive findings are emerging. However, any list of genes identified 
promptly becomes obsolete, so none will be provided here.

This research is far from mature. Because of the limited scope of existing genetic testing 
equipment, studies of the whole genome have been at low density; less than a tenth of the 
genome has been evaluated at high density. The small sample size of many studies further 
impairs their power. In time, this research is likely to narrow the confidence intervals 
around some chromosomal locations so that they become statistically significant, and to 
identify the responsible alleles in the suspect chromosomal locations. 

However, if there were individual genotypes which conferred a high risk of CHD, it is likely 
that their effect would by now be detectable and their existence known, even if their 
location in the genome was not. The odds ratios for most implicated genes, and certainly 
for the more common ones, are therefore likely to be no more than 1.3, too low for a 
single gene usefully to improve the discriminatory power of risk models. These odds ratios 
are lower than those associated with many conventional risk factors; for example, in the 
derivation cohort of QRISK2, the hazard ratio in men associated with treated hypertension 
was 1.68 (95% confidence interval 1.60 to 1.77), for current smoking 1.65 (95% confidence 
interval 1.60 to 1.70) and for type 2 diabetes 2.20 (95% confidence interval 2.06 to 2.35).28 
Rare homozygotes will have higher risks.
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Polygenic approaches

In breast cancer, more progress has been made in understanding the contribution of 
genes to disease. Genome-wide association studies have so far reported seven breast 
cancer susceptibility loci at high levels of statistical significance, each of which confers 
a small increase in risk. However, they are each fairly common, independently inherited 
and appear to act multiplicatively. Pharoah et al. showed that knowledge of a woman’s 
genotype can be used to adjust the baseline risk of cancer implied by her age and thus 
improve the targeting of screening and other risk reduction measures.59

Could the same approach work in CHD? A proof-of-principle study was based on a model of 
ten genes which earlier research suggested might confer higher risk.60 The genes had odds 
ratios of between 1.13 and 1.42 and frequencies between 11% and 80%. The modal number 
of risk alleles per individual was three. Compared with those carrying no risk alleles (only 
0.8% of the population), those with all ten had an odds ratio for CHD of 8.25. Compared 
with the mean risk of the population, probably a more useful comparison, those with six 
or more alleles had a significantly higher risk of CHD. They constituted only 4.9% of the 
population but had a combined odds ratio of 3.73. 

The authors went on to apply their results to the baseline risk of CHD, and so to estimate 
how knowledge of risk alleles might change estimations of absolute risk. For a man of 55 
years, the average baseline risk was assumed to be 16% over ten years; this fell to 8.1% if 
he carried no risk alleles and rose to 42% with all ten present.

How does this model compare with Pharoah et al.’s findings? In the breast cancer model, 
the odds ratio was 2.36 times higher in a woman on the ninety-fifth centile compared with 
one on the fifth centile. This is similar to the odds ratio of 3.05 in Drenos et al.’s model, 
comparing average risk in the first and tenth deciles.

There are however some important problems with the polygenic approach to CHD. 

The odds ratios used in Drenos 1. et al.’s model were unadjusted for conventional risk 
factors. They would need to be adjusted before they could be added to existing 
risk models, to avoid violation of the assumption of independence of effects which 
underlies the models. Since the alleles are known to be associated with phenotypic 
risk factors and have modest odds ratios to begin with (only four had a lower 95% 
confidence limit above 1.1), their apparent effect might be entirely the result of 
residual confounding.
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The goal of this research is to create a model in which genotypic and phenotypic 2. 
information is merged to improve CHD risk estimation. However, to some extent the 
genes operate via modifying the effect of behaviour and environment on phenotype; 
for example, cholesterol concentration is influenced by genes and diet.  

 Substantial research would be required to generate adequate data on how the risk 
associated with each genotype is influenced by environment and behaviour. Yet without 
such research, the modelling of risk from genotypic and phenotypic information cannot 
be merged. If the genes’ effects are dependent on carrier-specific environment and 
behaviour, the problem becomes even less tractable, since risk estimates from genes 
will be less generalisable over time and between populations. 

As Drenos 3. et al. acknowledge, it is unlikely that so many genes would interact in a 
simple multiplicative way. Given the pathogenic pathway which they influence, they 
probably have overlapping effects, by which one modifies the effect of others, or other 
forms of gene-gene interaction occur. This increases the complexity of the problem 
considerably. The way the risks are treated arithmetically is central to the outputs of 
the model, yet gene-gene interaction is a poorly understood area of genomics, there 
are many genes involved here, more will be identified in future and the way they 
interact may well be conditioned by the environment.

A final issue is the limited population value of this approach. In Drenos 4. et al.’s model, 
more than 95% of people have five or fewer risk alleles. The most at-risk members of 
this group – those with five alleles, constituting 12% of the population – did not have 
an odds ratio which differed significantly from that of the population as a whole. This 
suggests that only the rare individuals with many hazardous alleles will benefit from 
a genetic approach. In breast cancer, there is value in identifying low-risk women, 
because of the risks and costs of mammography that could be avoided by not screening 
them. By contrast, there are few substantial benefits from transferring people from 
a moderate CHD risk category to a low risk one, if no specific action to reduce risk 
is indicated in either situation. If it becomes accepted that people at moderate risk 
should receive interventions to reduce CHD risk, this would change.

 We cannot rely on more data identifying more alleles and resolving this difficulty. 
The odds ratios in Drenos et al.’s model were derived from meta-analysis, but meta-
analyses which take into account factors such as the publication bias, ethnicity and 
heterogeneity can undermine confidence in previously promising genes.

Other researchers have investigated the potential of a polygenic approach to CHD risk 
prediction. Janssens et al. published a simulation study showing the relative importance 
of allele frequency, population disease prevalence and odds ratios in a polygenic model.61 
The simulation showed that, since the effects of susceptibility genes are generally modest, 
the value of the approach depended on the frequency of the genes in the population. 
In particular, for plausible risk associations, the areas under the receiver operator 
characteristic curve were low with gene frequencies below 30%.
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Single nucleotide polymorphisms (SNPs) on chromosome 9p21.3 have been consistently 
associated with CHD. Talmud et al. analysed the effect of inclusion of two alleles 
associated with increased CHD risk in the estimation of risk of the disease among 2742 
white male participants in the second Northwick Park Heart Study.62 One of the SNPs 
(rs10757274 A>G) was associated with CHD in this cohort, with a hazard ratio independent 
of conventional risk factors including family history of 1.60 (95% confidence interval 1.12 
to 2.28, p = 0.03). However, the area under the receiver operator characteristic curve was 
not significantly improved by its inclusion in risk estimation (0.62 became 0.64, p = 0.14). 

The authors went on to model the impact on risk of up to ten hypothetical, randomly 
assigned gene variants, with allele frequencies and risk similar to those of rs10757274 A>G. 
The addition of only one of these SNPs increased the area under the receiver operator 
characteristic curve significantly (p<0.03), with the inclusion of two or more SNPs having a 
greater effect (p<0.001), and further SNPs having smaller incremental effects. With all ten 
SNPs included, the area under the curve was 0.76. The classification of participants was 
improved by the additional SNPs; specifically the addition of the rs10757274 A>G SNP to 
the Framingham Risk Score meant that fifty-five men (2% of the cohort) were moved from 
below to above the 20% ten-year risk threshold for statin treatment. The observed risk in 
these men was 24%, indicating the appropriateness of the reclassification. The authors do 
not state how many were reclassified in the opposite direction. 

This paper shows once again the potential of the polygenic approach, but deals with alleles 
not yet known to exist. Arguably, if there were several other alleles with as large an effect 
as the one they studied, some evidence of their existence would by now be apparent. 

The potential of genetic information, alone and in combination with conventional risk 
factors, to predict risk was explored in another paper from the same group.63 For this 
paper, members of the same cohort study were tested for twelve genes known to influence 
plasma lipids, haemostasis and vascular cell biology. Only four genes remained in the 
model in stepwise multivariate analysis; their combined area under the receiver operator 
characteristic curve was 0.62 (95% confidence interval 0.58 to 0.66). By comparison, the 
area under the receiver operator characteristic curve for age, triglyceride and cholesterol 
concentration, systolic blood pressure and smoking was 0.66 (95% confidence interval 
0.61 to 0.70), which was not significantly different from the result based on genotype (p 
= 0.20). Combining the conventional risk factors and the genotypes significantly improved 
discrimination compared with the former alone (p < 0.001), the area under the receiver 
operator characteristic curve increasing to 0.70 (95% confidence interval 0.66 to 0.74). 

This study encourages belief that CHD prediction will be enhanced by the inclusion of 
genotype information, and is one of very few studies showing that effect for real, as 
opposed to hypothetical, genes. The authors sound a note of caution by pointing out that 
only two of the four included genes (APOE and LPL) have been shown by meta-analysis to 
be associated with CHD. Furthermore, they identified the genes and tested the impact of 
their assessment in the same cohort, which will tend to exaggerate their apparent impact.
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Conclusion

In principle, estimating risk using genetic biomarkers has important advantages. A 
polygenic approach is a powerful way to use genetic information about diseases where 
many low-penetrance genes confer small alterations in risk, with breast cancer providing 
a good example of its potential. By contrast, CHD is characterised by better knowledge 
of aetiological epidemiology, more uncertainty about the influence of genes and severe 
difficulties in bringing together genetic and environmental information. 

The available studies reinforce the potential of this approach, but often rely on 
hypothetical genes with prevalences or strengths of association that may be implausible. 
Although continued investigation of the role of polygenic models is important, it is likely 
to be some time before genetic information is of value in improving the estimation of 
individuals’ risk of CHD.
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4  Next steps: towards better models, better assessment  
 methods and better translation into practice

Summary

Great progress has been made in using knowledge of the aetiology of CHD to predict •	
risk in individuals, though our present methods are far from perfect.

Risk prediction systems for CHD and other diseases are likely to grow in importance.•	

However, our knowledge of how to appraise their performance and manage their •	
translation into practice is poorly developed.

Various methods for gauging the value of risk models have been developed, but none •	
is obviously superior, and there is uncertainty about how to integrate the information 
they provide in order to make clinical and wider policy decisions.

We therefore need to specify what needs to be known before a risk prediction system •	
can be recommended for general use.

Wider use of risk prediction systems has important implications for the education of •	
practitioners, policy-makers and the public.

Background

At first sight, this report’s findings may appear disheartening. The evidence indicates that 
novel molecular biomarkers are unlikely to improve substantially our ability to predict the 
risk of CHD in individuals, and also that single alleles with a strong enough association with 
CHD to improve the performance of risk models probably do not exist. 

There are grounds for optimism however. Good progress has been made in predicting 
CHD risk; indeed, there are few other diseases with a multi-factorial aetiology which we 
can predict with similar accuracy. The available models give considerable insight into 
individuals’ risk of developing the disease and can be used to target interventions. 

The fact that such a variety of risk scores exists, and that at least one of them appears to 
perform well in the contemporary British population, is encouraging, although clearly a 
substantial amount of variation in risk is still unexplained. Also of note is the developing 
knowledge of how to measure the performance of risk prediction systems in a way which is 
more relevant to their practical application.

Nevertheless, there is still an important amount of unexplained variation in risk, and all 
the available models have limited discrimination. This is being addressed by research on 
several fronts. There is continuing investigation of novel molecular biomarkers, stimulated 
by the hope that these may either provide insight into the pathogenic mechanism of 
the disease or enhance the performance of existing risk scores. There are genome-wide 
association studies, searching for SNPs linked to an increased likelihood of CHD. And 
there are new models, either making better use of molecular and lifestyle biomarkers or 
exploring the potential of a polygenic approach.
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Which of these approaches will prove most fruitful is uncertain, and all are worth pursuing. 
Given what we know about the importance of both inherited and lifestyle factors in the 
aetiology of CHD, there is particular interest in the potential of risk models which combine 
the two, although there are significant barriers to their development.

Future challenges

Risk prediction systems for CHD and other diseases are likely to grow in importance. More 
candidate risk factors are being identified and more interventions are available to reduce 
risk, both via primary and secondary prevention. There is increasing pressure, partially 
fuelled by recent advances in human genetics, for a shift in both medicine and public 
health from detection and cure to prediction and prevention of disease. Furthermore, 
there is rising societal and professional interest in personalised medicine, the tailoring 
of care to the specific characteristics of individuals; this approach is as relevant to 
prevention as it is to treatment, and will increase interest in risk prediction systems. The 
identification of more risk factors, and perhaps new statistical techniques, will mean that 
the models themselves will become more complex. 

The growing availability, variety, complexity and potential value of risk prediction models 
for many diseases including CHD have important implications for clinical medicine, public 
health and the wider community. Physicians, scientists, policy-makers and consumers will 
need to assess the validity, utility and wider implications of approaches to risk prediction, 
and to choose which models to use. But at present they lack the means to do so in a 
systematic manner, for two reasons:

Risk prediction systems give different results on different metrics, but it is not clear •	
how to respond to this. Which metrics are more useful in indicating suitability for 
general use? Can we identify which metrics are more important in particular clinical 
and policy situations? 

It is not clear how to interpret differences in the metrics: for example, small •	
improvements in the area under a receiver-operator characteristic curve may 
be statistically significant, but does this imply an important improvement in 
discrimination? How do improvements in the accuracy of a risk score affect its clinical 
utility?
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A way forward

An earlier generation was confronted with similar issues when population screening tests 
and programmes began to emerge in the 1960s. In 1968, Wilson and Jungner published 
criteria by which to appraise approaches to screening and to decide which were suitable 
for implementation. Their work has been highly influential; although the standards have 
been refined and developed since their promulgation, Wilson and Jungner focussed 
attention on the key attributes of the disease, the programme and the test that still merit 
the most attention.

We now need to establish criteria against which risk prediction systems can be appraised. 
To the extent that such systems are used in healthy populations, the Wilson and Jungner 
criteria for population screening programmes will still be of relevance to their appraisal, 
though their use for prognostication in people who are already symptomatic raises 
different issues. Moreover, existing criteria for screening tests describe the characteristics 
of suitable tests in ways which cannot be readily applied to risk prediction models. For 
example, the UK National Screening Committee criteria include a requirement that “There 
should be a simple, safe, precise and validated screening test”,64 but do not explore the 
trade-off between simplicity and precision, or describe how validity is to be assessed. If 
the complexity of a risk prediction model is handled reliably by software invisible to the 
model’s users, then we might willingly forego a great deal of simplicity in order to achieve 
improved validity. Furthermore, risk prediction models are no longer solely confined to 
use within national screening programmes, and therefore may require somewhat different 
methods of appraisal. For example, general practitioners are increasingly using risk 
models opportunistically, while numerous disease risk models are also available directly 
to the consumer via the internet, and may therefore be used outside formal healthcare 
altogether.

By specifying what needs to be known before a risk prediction system can be recommended 
for general use in a way which reflects its context, we can provide a basis for the 
appraisal of such systems and for a more rational process of policy development and 
implementation. 

Questions of particular importance include

What is meant by validity in statistically complex risk prediction models?•	

How should validity be assessed?•	

How should utility be assessed?•	

What principles should guide decisions about the translation of risk prediction models •	
into general use?

What knowledge do practitioners, policy-makers and the public need to make best use •	
of risk prediction systems?

The uncertainty about these questions made decision-making harder for those developing 
NICE’s clinical guideline on lipid modification. By addressing these questions, we can build 
on previous success in CHD risk prediction and develop an even sounder understanding of 
how to gauge reliably the risk of many other diseases, and prevent them where possible.
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Techniques for assessing models

Most assessments of novel biomarkers have reported a measure of the association between 
the biomarker in question and CHD. This provides little insight into the extent to which use 
of the biomarker would improve risk estimation, or the particular circumstances in which 
it might have value. Some studies have also reported the areas under the receiver operator 
characteristic curve, with and without the biomarker included. This is more useful in 
assessing whether the biomarker improves the discrimination of risk modelling. In some 
cases, for example QRISK, the accuracy of models’ calibration have been assessed; this has 
seldom been done with models that include novel molecular biomarkers.

However, there are other dimensions to a model’s performance. One is the proportion of 
variance which it explains, an indication of its comprehensiveness. But arguably of greater 
importance is the extent to which a model improves the accuracy of classification. This 
is especially so with CHD, where the estimated risk is used to classify people into those 
who will and will not be offered specific interventions, such as statins. For example, a risk 
model may generally perform well, with the addition of a biomarker making little overall 
difference to measures of its calibration and discrimination. However, the new model 
might have particular effects close to the threshold for intervention, currently in the UK 
a twenty percent risk of CHD over the next ten years. The model’s use might lead to the 
transfer of a group of people, previously classified as below the intervention threshold, 
to a high-risk group, and therefore, to them being offered treatment. If the risk in this 
transferred group was indeed more than 20%, then the reclassification was appropriate 
and the new model has benefits not readily detectable without the assessment of its 
reclassification effects. Correct reclassification downwards is also of benefit, in that less 
cost-effective and potentially harmful treatment is avoided in people in whom the benefits 
are less than they would otherwise have seemed.

Reclassification is emerging as a metric for assessing models.34 It is of particular interest 
because it responds to an important criticism of other forms of model assessment – that 
they do not take into account the clinical consequences of what they measure. The value 
to patients and clinicians of a small improvement in a model’s calibration or discrimination 
is far from clear, but the advantages of generally correct reclassification are tangible and 
can even be valued in an economic evaluation. 

We need to know more about the reclassification effects of different models and 
biomarkers. This could shed light on whether the addition of a biomarker may be of more 
value than its effects on discrimination and calibration would suggest, either generally 
or in specific clinical situations. These might either be in people close to an important 
intervention threshold, or people with a particular pattern of risk, such as “normal” 
conventional risk factors but an ominous family history. Articles promoting use of novel 
biomarkers often specifically advocate their use in people at intermediate risk of CHD 
(10% to 20% over ten years).65 66 To what extent is this justified, either by theoretical 
considerations or by the evidence? Can novel biomarkers individualise risk estimations 
in people in whom the correction of a mis-estimate from conventional risk factors is 
especially important?
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Towards successful translation

Risk prediction can have several benefits. For some risk scores, there are interventions 
available for those diagnosed as at higher risk, that are known to mitigate their risk of 
either developing the disease or experiencing a worse long-term outcome. Examples 
include weight loss to prevent type 2 diabetes and mammography to detect breast cancer, 
where earlier definitive diagnosis and treatment reduces mortality. However, in other cases 
there is no intervention which alters the disease’s trajectory – for example, Alzheimer’s 
disease. Here, the only benefit of treatment is to provide the individual with an indication 
on their risk relative to the population as a whole.

We need further research into the clinical and cost effectiveness of the interventions 
available to those who are shown to be at higher risk by a prediction system, and more 
understanding of the threshold at which these interventions are appropriate. For example, 
should an asymptomatic person be offered a coronary angiogram if his risk of CHD was the 
same as someone with angina? 

Risk prediction models are often complex, and are likely to become more so. Their 
successful translation into practice requires not only better understanding of how to 
appraise their performance, but also more widespread knowledge of how to use their 
outputs in practice. The implications of this for the education of practitioners, policy-
makers and the public are substantial.  

Conclusions

The potential of risk predication models in health is far from fulfilled. Their capacity 
to incorporate advancing knowledge of biomarkers and to individualise health care give 
them great potential to integrate epidemiological, molecular and genetic information 
into a modern, personalised form of healthcare. Although further scientific advances will 
strengthen existing models and lead to the emergence of new ones, what is most urgently 
needed is a better understanding of how to manage their translation into practice. This 
involves the identification of better metrics, a more systematic approach to the appraisal 
of models, and the education of practitioners, policy-makers and the public in the use of 
the models.
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