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1. Machine Learning Landscape 

 

Machine learning promises to change the practice of healthcare and transform medical 

research. Delivering on such promises requires a robust yet flexible policy and a regulatory 

framework to support the introduction of new technologies. This report provides an 

introduction to the topic of machine learning, a working definition for ‘machine learning’ and 

‘artificial intelligence’, consideration of the breadth of applications for machine learning in 

medical research as well as healthcare, and an overview of the emerging policy landscape. 
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2. What is machine learning? 

 

This section distinguishes artificial intelligence from machine learning, defines machine 

learning, and highlights notable differences between data modelling and algorithmic modelling 

cultures. 

a. Artificial intelligence or machine learning? 

 

Machine learning is one methodological approach to artificial intelligence.1 Artificial intelligence 

(AI) can be defined as ‘the science and engineering of making computers behave in ways that, 

until recently, we thought required human intelligence.’2 As Lipton (2018) notes, early work on 

AI included a broad set of approaches, machine learning being only one of this set.3 For 

instance, rule-based expert systems that attempt to systemise knowledge as conditional if-

then rules were popular in the 1980s, being largely eclipsed by machine learning in recent 

years.4 

 

We prefer the term ‘machine learning’ when describing many of the technologies detailed in 

this report for the following reasons. First, it is the most accurate term to describe the set of 

techniques we discuss. That is, most of the tools, systems, or devices we discuss belong to the 

subset of machine learning techniques. Second, there has been a trend to prefer ‘machine 

learning’ over ‘AI’ to distance current research from grandiose claims associated with early 

research and so the label ‘AI.’ Consequently, machine learning typically denotes methods that 

only have task-specific intelligence and lack the broad powers of cognition feared when ‘AI’ is 

mentioned.5 Following this, we use the term machine learning, making clear where the method 

belongs to AI in general instead. 

 

A Salient Feature | Roundtable 2 

 

Some participants thought that we should do away with the terms ‘AI’ and ‘machine 

learning’ in some circumstances. One thought was that replacing these terms with 

‘complex modelling’ or an equivalent term might avoid public aversion surrounding AI 

or machine learning and make clear that these methods are contiguous with statistical 

modelling. 

 

b. Machine learning 

 

Machine learning as a programming paradigm differs from classical programming in that 

machine learning systems are trained rather than explicitly programmed.6 Classical 

programming combines rules and data to provide answers. Machine learning combines data 

and answers to provide the rules (see Figure 1 below). Machine learning models are trained 

with many examples (data) relevant to the task, the algorithm finding structure in these 

examples to provide rules to automate the task. 
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Figure 1: Chollet 2017 

 

 

Machine learning consists of these three ingredients: features that ‘define a language in which 

we describe the relevant objects, be they emails or complex organic molecules’; tasks being 

the abstract representation of problems we wish to solve with these objects; and models being 

the product of applying the machine learning algorithm to the training data.7 

 

We distinguish between the following: 

 

The machine learning algorithm (or untrained model) concerns ‘how the algorithm 

learns a model from the data and what kind of relationships it can learn.’8 

 

The machine learning model (or trained model) is ‘produced as the output of a machine 

learning algorithm applied to training data.’9 Sometimes also called ‘the trained model,’ 

the model here has been trained according to the machine learning algorithm on a 

training set of data. 

 

The machine learning system relates to the device which encompasses the machine 

learning model. The wider system might include the user interface, supporting 

architecture, visualisation of the model, as well as any physical device in which the 

software is embedded. 

 

The term ‘machine learning’ describes a diverse set of methods to detect and predict patterns - 

there is no one machine learning technique. It is common to divide the field into three 

paradigms of machine learning: 

 

I. ‘Supervised’ (or ‘predictive’) learning uses training data consisting of labelled sets of 

input-output pairs. Following these pairs, the model will then learn the features of the 

input data associated with the labelled outputs. For example, to construct an email 

spam filter, sample emails (inputs) known to be or not be spam will be labelled as such 

(output) to constitute a model. 

 

II. ‘Unsupervised’ (or ‘descriptive’) learning approaches attempt to find patterns of interest 

in the data. Unlike supervised learning, the relationship between the inputs and outputs 

is unknown. Many unsupervised machine learning models are directed toward finding 

structure in a dataset, often a necessary step to solve a supervised machine learning 

problem. 

 

III. ‘Reinforcement learning’ tells us ‘how to act or behave when given occasional reward or 

punishment signals.’10 In this way, an ‘agent’ receives information about its 

environment and learns to pick actions that maximise some reward. Reinforcement 

learning has applications across a diverse set of fields, for instance, self-driving, 

robotics, resource management, and education. 

 

Is machine learning different from traditional modelling techniques? 
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c. Two cultures 

 

Broadly, machine learning can be conceptualised as a form of statistical modelling. Breiman 

(2001) distinguishes between two different approaches to statistical modelling: 

 

I. Data modelling approaches start by ‘assuming a stochastic data model for the inside of 

the black box.’11 Following this approach, the black box is filled in by estimating 

parameters from data and for prediction (see Figure 2 below). Typically, these models 

are validated by goodness-of-fit tests. 

 

 
a. Figure 2: Breiman 2001 

 

II. Algorithmic modelling approaches ‘consider the inside of the box complex and 

unknown.’12 These approaches seek to predict response variables based on input 

variables (see Figure 3 below). Typically, these models are validated by their predictive 

accuracy. 

 

 
b. Figure 3: Breiman 2001 

 

 

As noted by Renkl and Molnar (2019), the algorithmic modelling method often produces black 

box models as they provide no direct explanation for their predictions.13 Machine learning 

typically constitutes an algorithmic modelling approach. Consequently, where black box 

problem arises, so does the problem of interpretability. 

 

Section 2 key messages: 

 

➢ Machine learning is a subset of artificial intelligence, machine learning models 

being trained with many examples (data) relevant to the task, the algorithm 

finding structure in these examples to provide rules to automate the task. 

➢ Machine learning often counts as an ‘algorithmic modelling approach.’ This 

approach assumes a black box that is complex and unknown, predicting input 

variables to output variables without explaining what happens in between. 
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3. Where is machine learning being used? 

 

There are many articles outlining the variety of uses for machine learning in healthcare and 

research.14 The following two sections provide an indicative look, first at machine learning for 

medical research and, second, machine learning for healthcare - both tables emphasise the 

breadth of machine learning applications in these areas. Prior to these tables, it is important to 

note the following: 

 

First, some machine learning applications are already in use, are close to implementation, or 

are more speculative in nature, being uncertain to ever make it to market or be put into 

service. 

 

Second, the field of machine learning for healthcare and research is currently undergoing a 

process of systemisation. This is evidenced by journals adopting new standards for publication 

of articles concerning machine learning,15 a multitude of articles being published on how to 

read publications on machine learning with a sceptical eye,16 and the notable gulf in producing 

evidence linking an interesting machine learning model to evidence of clinical utility.17 

 

Third, the various applications listed vary in how automated they are, that is, each different 

system automates tasks or decisions in healthcare/research to varying extents. Regardless, it 

is fair to say that most near-term uses are assistive only - they support, augment, and 

enhance human healthcare professionals or researchers. 

 

A Salient Feature | Roundtable 2 

 

Participants in Roundtable 2 noted that near term applications for machine learning will 

be assistive for three main reasons. First, it represents the state of, and limitations of, 

current technology. Second, combining machine learning with human healthcare 

professionals and researchers combines the strengths of both and mitigates against 

differing weaknesses. Third, liability concerns may influence the decision to shift the 

intended use of machine learning systems to be assistive only, so devices are 

considered clinical decision support, the primary liability falling to the healthcare 

professionals interpreting the model. 

 

Fourth, some machine learning systems will qualify as medical devices, being subject to 

comparatively stringent requirements to evidence their safety and to ensure that they meet 

their intended use. Some machine learning models, while qualifying as medical devices, will 

count as health institution exempt devices, being exempt from many of the requirements to 

evidence safety and effectiveness.18 Other machine learning systems will not qualify as medical 

devices at all - perhaps because they are for research use only, or because they are for 

operational/administrative use only and so lack a specifically medical purpose,19 or because 

these devices constitute lifestyle or wellbeing devices, thereby also lacking a medical 

purpose.20 For a fuller treatment of machine learning as a medical device, see our Algorithms 

as a medical device report.21
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a. Machine learning for medical research 

 

Machine learning promises to change numerous diverse parts of medical research and its practice. Table 1 below outlines the breadth 

of applications for machine learning in this sector. 

 

Table 1: indicative uses 

of machine learning for 

medical research 

General area of impact Challenge the tool addresses Example of a tool Description of tool 

Literature aggregation The task of compiling 

systematic reviews. An estimated 2.5 

million English language 

scientific articles 

are published each year and rising 

Project Transform 

(with EPPI-Centre 

at University 

College London), 

Cochrane22 

Machine learning to assist with 

searching, study eligibility 

assessment, data extraction, and 

evidence synthesis 

Hypothesis generation 

and targeting A 

Linking millions of single-nucleotide 

polymorphisms to individual traits, 

typically complex diseases in genome-

wide association studies 

COMBI23 Support vector machine model to narrow a 

subset of possible SNPs and perform hypothesis 

testing 

Hypothesis generation 

and targeting B 

Finding novel antibiotic candidates Stokes et al (2020) 

model24 

Deep learning models to predict antibiotics 

based on structure 

Knowledge discovery  Disparate sources of knowledge 

resulting in challenges in knowledge 

discovery 

WuXi NextCODE25 Domain-specific AI algorithms for biological 

understanding, drug discovery and optimal 

clinical trial design 

Understanding 

fundamental biological 

processes A26 

Predicting gene targets of microRNAs Zurada (1994) 

model27 

 

Deep recurrent neural networks to predict gene 

targets for microRNAs 
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Understanding 

fundamental biological 

processes B 

Predicting the structure and function of 

proteins 

Wang et al (2016)28 Machine learning to predict the structure and 

function of proteins 

Epidemiological 

research - pollution 

Finding patterns, extracting information, 

and making predictions using large 

epidemiological datasets 

Bellinger et al 

(2017)29 

Machine learning to source apportionment and 

forecast air pollution in large datasets 

Drug 

Discovery/development 

Tailored drug discovery BenevolentAI Drug discovery platform that draws on mined 

and inferred biomedical data 

Cohort selection Identifying cohorts for clinical trials and 

studies 

Chen et al (2013) 

using active learning 

to identify three 

disease cohorts: 

rheumatoid arthritis, 

colorectal cancer, and 

venous 

thromboembolism30 

Active learning to extract phenotypic 

information from electronic health records 

Drug repurposing Developing effective 

treatments for rare diseases can be 

difficult as getting novel drugs to market 

is an expensive exercise and rare 

disease populations are, by definition, 

small 

Healx’s HealNet31 Machine learning to draw on a number of 

datasets: clinical trials, disease symptoms, 

drugs targets, multi-omic data, and chemical 

structures to identify new uses for existing 

drugs. That is, old drugs, new tricks 

 

 

 

As demonstrated, machine learning has a variety of applications for medical research. Medical research inevitably blends into 

healthcare and public health, as this research underpins the evidence base for current practice but might also have therapeutic 

objectives itself as research often aims to examine potential diagnoses or treatments.32  
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b. Machine learning for healthcare and public health 

 

Machine learning promises to change the practice of healthcare, having a breadth of applications across patient pathways and the 

direct to consumer market. Table 2 below outlines the breadth of applications for machine learning in this sector. 

 

 

Table 2: Indicative 

uses for machine 

learning in healthcare 

and public health 

General area of impact Challenge the tool addresses Example of tool Description of tool 

Infectious disease 

tracking 

Forecasting zoonotic disease, 

distinguishing reservoirs from 

nonreservoirs 

Han et al (2015) model33 A machine learning model that combines 86 

predictor variables to predict novel zoonotic 

reservoirs and geographic regions where 

emerging pathogens are most likely to arise 

Screening – breast 

cancer 

Breast cancer screening from 

mammography 

McKinney et al (2019) paper34 A deep learning model for identifying breast 

cancer in screening mammograms 

Early detection  Distinguishing between stable mild 

cognitive impairment and 

progressive mild cognitive 

impairment (dementia) 

Giorgio et al (2020) paper35 A machine learning model to predict whether an 

individual with mild cognitive impairment will 

decline or remain stable 

Medical imaging The time consuming task of 

manually delineating radiological 

images 

InnerEye36 Automatic delineation of healthy anatomy from 

tumours 

Stratification Predicting patient risk for complex 

diseases 

Ho et al (2019) review37 Machine learning algorithms to improve polygenic 

risk scores 

Phenotyping Difficulty of recognising facial 

features related to rare diseases 

DeepGestalt38 Deep learning driven facial analysis software for 

rare disease phenotyping and phenotype driven 

genetic variant prioritisation via smartphone 

Appointment 

scheduling 

Non-attendance of hospital 

appointments 

University College London 

Hospitals and University College 

London model39 

A machine learning model to predict which 

patients will fail to attend appointments 

Triaging Triaging in emergency 

departments 

Levin et al (2017) model40 Random forest model including features relating 

to vital signs, chief complaint, and active medical 

history that predicts the need for critical care, 
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emergency procedures, and inpatient 

hospitalisation 

Diagnosis -Radiology Diagnosis of difficult to diagnose 

wrist fractures 

OsteoDetect41 AI analysis of wrist radiographs to highlight 

regions of distal radius fractures 

Diagnosis -

Ophthalmology 

Detecting retinal disease De Fauw et al (2018) model42 Deep learning to analyse three-dimensional 

optical coherence tomography scans to make 

accurate referrals for retinal disease 

Prognosis Predicting survival in cancer 

patients beyond 120 days post-

palliative chemotherapy 

Ng et al (2012) model43 A neural network including features relating to 

patient attributes tumour attributes, treatment 

attributes, clinical attributes, and laboratory 

attributes to predict survival of cancer patients 

beyond 120 days after palliative chemotherapy 

Alert systems Detection of drug to drug 

interactions, tailoring medication 

doses in response to age and renal 

insufficiency 

Kuperman et al (2007) review44 Machine learning to detect contraindications and 

tailor dosage 

Treatment A Therapeutic decision support  Cambridge Cancer Genomics45 AI platform intended to support oncologists to 

provide personalised cancer therapy 

Treatment B Differentiating between malignant 

and benign tissue in breast 

surgery 

iKnife46 Analysing the vaporisation of tissue using Rapid 

Evaporative Ionisation Mass Spectrometry to 

differentiate malignant and benign tissue while in 

surgery 

Management of 

conditions 

Predicting patient glucose levels Plis et al (2014) model47 Support vector regression to predict blood 

glucose levels 

Patient facing tools Counselling patients for genetic 

services 

Clear Genetics48 

 

OptraHealth49 

 

 

AI chatbot/digital assistant for conversing with 

patients about genetics 

 

AI chatbot that can be queried via virtual 

assistant tools such as Amazon Alexa and 

Microsoft Cortona 
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In addition to the variety of direct uses for machine learning in healthcare and public health, 

machine learning also has applications supporting health systems via operational and 

administrative support. For example, automated scheduling systems to manage staff rotas. 

 

As demonstrated, machine learning has diverse applications in the healthcare sector. However, 

the success of its implementation depends upon the technology being supported by policy. It is 

to the development of that policy that we now turn. 

 

Section 3 key messages: 

 

➢ Machine learning has wide application across medical research and healthcare. 

Notably, some applications are already in use, some are close to 

implementation, others are more speculative. Further, it is also important to 

note that machine learning is also undergoing systemisation - reporting 

standards are being improved. 

➢ Machine learning for medical research has a number of applications. Medical 

research often blends into healthcare, research underpinning the delivery of 

care but also often constituting care, healthcare and including therapeutic 

intent as well. 

➢ Machine learning for healthcare has broad potential application, much of the 

patient pathway and direct to consumer market, being subject to at least 

speculative machine learning involvement.
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4. Policy context 

 

As technical aspects of AI and machine learning gain pace, and ML applications are 

implemented across many different sectors, there has been a proliferation in the policy 

documentation generated on this topic. This documentation varies in territorial scope, sectoral 

specificity, and the time of publication. A comprehensive review of the policy landscape is 

outside the scope of this report, but this section highlights some of the key resources which 

are relevant to health care and medical research within the UK. 

 

This documentation emanates from a variety of different sources. In this section, we will focus 

on guidance from non-legislative sources, such as policy think tanks, and professional bodies, 

sometimes in collaboration with regulators. This policy guidance can be classified in a number 

of different ways: in terms of its jurisdictional scope, the extent of its focus on AI and machine 

learning, and, lastly, its sectoral scope (i.e. relating to health). It can also be classified 

according to the extent to which it has statutory weight and is likely to be used by regulators, 

or will be used to guide, but not mandate, best practice. 

 

In the UK, there are several key sources of advice and guidance on AI development. Important 

stakeholders include the Information Commissioner’s Office (ICO) which constitutes the 

statutory authority for upholding information rights, including the General Data Protection 

Regulation, UK Data Protection Act 2018 and law enforcement processing. Within the health 

sector, NHSX has responsibility for establishing a framework for developing AI in the health 

and care system. Other organisations, including the National Institute for Health and Care 

Excellence have developed evidence standards, complementing guidance from ICO and NHSX 

to ensure that new technologies are clinically effective and offer economic value. 

a. Jurisdiction: International, supranational and national resources 

 

There is increasing recognition that determining appropriate ethical and regulatory oversight of 

AI applications is a universal challenge, which can best be met by consistent and harmonised 

approaches. Although there are some examples of global policy initiatives mostly concerning 

autonomous or intelligent systems,50 the requirement for developers to take account of 

European legislation and regulation suggests that European level guidance might be more 

authoritative in practice. One of the key elements of this project concerns the legal and 

regulatory requirements for transparency and explanation, and legislation which applies at 

European level. Therefore, the policy context includes guidance on interpretation of relevant 

European laws. 

 

b. EU High-level expert group on artificial intelligence 

 

This independent group, convened in June 2018 had the mandate of creating a framework for 

developing Trustworthy AI through two deliverables, AI Ethics Guidelines51 and Policy and 

Investment Recommendations52. In draft Guidance, published in April 2019, it opined that 

Trustworthy AI has 3 components (1) lawful (applicable laws) (2) ethical (3) robust (from a 

technical and social perspective). Although the Guidelines cover second and third elements 

only and offer guidance in varying levels of abstraction, the authority for these Guidelines stem 
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from fundamental rights enshrined in the Charter of Fundamental Rights of the European 

Union and in relevant international human rights law. 

Chapter 1 cites explicability as an ethical principle that should underpin the development, 

deployment and use of AI systems. Where explicability is impossible, for example, for some 

‘black box’ algorithms, the guidance states that there may be a requirement for other 

explicability measures (such as traceability, auditability and transparent communication on 

system capabilities). The guidance notes that the degree to which explicability is needed ‘is 

highly dependent on the context and the severity of the consequences if that output is 

erroneous or otherwise inaccurate.’53 

Chapter II sets out seven requirements that AI systems should meet. These build on the order 

of principles and rights in the EU Charter. Transparency – listed 4th – incorporating 

requirements for traceability, explainability, and communication, is one of the seven identified 

requirements but it is not acknowledged that meeting some of the other requirements (e.g. for 

technical robustness and safety, or accountability) may also be predicated on transparency.54 

This chapter also highlights the need for clear and proactive communication with stakeholders 

about the use of an AI system and its capabilities and limitations, and the requirement to 

provide human interaction as an alternative to using an AI system, where needed to ensure 

compliance with fundamental rights. 

Chapter III suggests that these ethical and practical requirements need to be tailored in 

accordance with specific AI applications, and suggests both technical and non-technical 

measures.55 

The High-Level Expert Group on AI have also developed a set of policy and investment 

recommendations building on the Trustworthy AI framework.56 This incorporates 33 

recommendations that ‘can guide Trustworthy AI towards sustainability, growth and 

competitiveness, as well as inclusion – while empowering, benefiting and protecting human 

beings.’ It is notable that these recommendations distinguish between business to consumer 

(B2C) (1/3 value), business to business (B2B) (2/3 value) and public to citizen (P2C) scenarios 

where the trust of individuals is described as ‘an even more crucial prerequisite.’57 A revised 

version of the assessment list is currently being developed. Thus whilst transparency underpins 

much of this guidance, it is moderated by context, specifically application and user. 

c. National policy guidance 

 

NHSX is a virtual body incorporating teams from the Department of Health and Social Care, 

NHS England and NHS Improvement, with responsibility for establishing a framework for 

developing AI in the health and care system in the UK. Building on the NHS Long Term Plan,58 

which included applications of machine learning from incident data to improve patient safety 

alerts, and in mental health to predict suicide, core sectoral guidance is enshrined in a Code of 

conduct for data-driven health and care technology59 which supports the development of data-

driven technologies in a ‘safe, ethical, evidenced and transparent way’ through the application 

of principles. The requirement for transparency forms part of a number of the principles in this 

code, for example: 

● Principle 4: be fair, transparent and accountable about what data is being used 

● Principle 6: be transparent about the limitations of the data used 

● Principle 7: show what type of algorithm is being developed or deployed, the ethical 

examination of how the data is used, how its performance will be validated and how it 

will be integrated into health and provision.60 

 

The application of these principles is elaborated in a recent report which advocates that the 

‘right to an explanation’ should be situated within a wider context:61 



Machine Learning Landscape         PHG Foundation 2020 

 

15 
 

‘Ethical and behavioural principles are necessary but not sufficient to ensure the design 

and practical implementation of responsible AI. The ultimate aim is to build 

transparency and trust.’ 

A key step is to explain the algorithm to those taking actions based on its outputs and those 

on the ‘receiving end’ of the decision making process. Dimensions include both content (e.g. 

the extent of automation/human intervention; what is meant by the term – meaningful 

explanation) and process (e.g. the need to coordinate with patient representative groups to 

develop meaningful language), and the use of trusted third parties (disease specific charities) 

to act as advocates for patient groups. 

This guidance from NHSX is aimed at the entire lifespan of an AI tool, from inception to 

implementation and post-marketing surveillance. This guidance is supplemented by 

publications from other regulatory bodies such as NICE 62 which sets out the evidence 

standards for digital health technologies intended for use within the UK health and care 

system. Aimed at technology developers and commissioners of digital health technologies, this 

guidance adduces functional classifications for digital technologies through a checklist, and 

within each tier, provides two levels of evidence – a minimum evidence standard and best 

practice standard. 

Despite this emerging guidance, and a proliferation of tools to support developers across the 

innovation pathway including the development of an online workbook of the Code in the form 

of a self-assurance portal63 a substantial minority of developers either lack insight about the 

need for explainability, or acknowledging the need, are uncertain what the requirements are, 

or how best to satisfy them. For example, the NHSX report cites a state of the nation survey in 

which 19% of developers were uncertain if they had incorporated the explainability of the 

system into its design, and a further 9% stated that they had not done so.64 This survey 

suggests that there is continuing uncertainty about the nature of explanation and its status in 

the development process. 

 

Section 4 key messages: 

➢ There has been a proliferation of policy on AI. This can be classified in terms of 

its jurisdictional scope, its focus on AI and machine learning, and sectoral 

scope: consequently it varies in specificity and statutory weight.  

➢ In the UK, key sources of advice and guidance include the Information 

Commissioner’s Office, which is the UK statutory authority for upholding 

information rights, and within the health sector, NHSX, which has 

responsibility for establishing a framework for developing AI in the health and 

care sector. 

➢ There is increasing recognition that determining appropriate ethical and 

regulatory oversight of AI is a universal challenge which is best met by 

consistent and harmonised approaches.  

➢ Important sources of guidance include the AI Ethics Guidelines developed by 

the EU High-Level Expert Group on artificial intelligence which recognise 

explicability as an ethical principle underpinning the development, deployment 

and use of AI systems. 

➢ The UK NHSX’s Code of conduct for data-driven health and care technology 

also highlights the importance of transparency as a principle underpinning the 

development process. However both sets of guidance do not provide more 

granular information about the form, content and timing of an explanation. 
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5. A call for interpretability 

 

This report has defined machine learning, outlined the variety of applications for the 

technology in healthcare as well as research, and has digested an array of policy that aims to 

support the technology’s uptake. This last section outlines two cases that illustrate the 

importance of interpretability in machine learning, the topic of the next Interpretable Machine 

Learning report.  

 

Why might interpretability of machine learning models be important in healthcare and 

research? In regards to healthcare, the following two examples might be instructive. 

 

Caruana et al (2015) describe a series of models to predict the probability of death for 

patients with pneumonia.65 The group found that neural networks produced the most accurate 

models. However, when the group trained in parallel a less accurate but interpretable rule-

based model, the group found that this model learned the following rule: ‘HasAsthma(x) 

LowerRisk(x).’ Consequently, it was shown that a confounding variable influenced the neural 

networks, the models correctly identifying that those with asthma were less likely to die, but 

only because as a group they were more likely to receive treatment. 

 

Zech et al (2015) trained a convolutional neural network to screen for pneumonia using x-

rays.66 Subsequent manual image review noticed that the model was able to differentiate 

between those x-rays taken by portable scanner (identified by the word ‘portable’ and inversion 

of colour in the x-ray) and those by static scanner, the model finding this distinction significant, 

portable scanners being used in the emergency department but not for inpatient units. 

Consequently, when the model found the word ‘portable’ significant it introduced a potentially 

confounding factor into the screening process. 

 

Following Caruana (2015) and Zech (2015), it is clear that interpretability (or the lack thereof) 

has the potential to impact upon the safety and effectiveness of machine learning systems. We 

examine the interpretability of machine learning in the Interpretable Machine Learning report 

and provide a framework for developers and product managers to think through interpretability 

with respect to their model in the Interpretability by Design Framework. 

 

Section 5 key messages: 

 

➢ Caruana (2015) notes an example where a confounding factor was found to 

underpin a model predicting risk of death through pneumonia. Zech (2015) 

outlines an example where a confounding factor was found to dictate the 

outcome of a convolutional neural network to screen for pneumonia in x-rays. 

➢ The Caruana and Zech examples demonstrate the potential importance, 

(although not universally required) of interpretability in ensuring models are 

safe and meet their intended purpose. 
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6. The landscape of machine learning 

 

The landscape of machine learning for healthcare and medical research includes an 

astonishingly broad range of applications. These applications present an opportunity to change 

the practice of healthcare and medical research. However, their successful implementation into 

service is contingent upon a number of factors, for instance, the introduction of machine 

learning requires robust, agile policy to facilitate uptake. Notably, the breadth of machine 

learning in these sectors also has to be safe, usable, and ultimately effective. Machine learning 

is commonly thought to face barriers in establishing its safety, usability, and effectiveness 

because the technique used for this purpose can often be a black box. The next Interpretable 

Machine Learning report considers interpretability of machine learning models and the methods 

to render otherwise uninterpretable models interpretable. 
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